A New Route to Benzo[4,5]cyclohepta[1,2-*b***]naphthalenes: Synthesis of Radermachol‡**

ORGANIC LETTERS 2000 Vol. 2, No. 8 ¹⁰⁴⁵-**¹⁰⁴⁷**

Frank M. Hauser* and Htwe Yin

Department of Chemistry, The University at Albany, State University of New York, Albany, New York 12222

fh473@sarah.albany.edu

Received January 26, 2000

ABSTRACT

Condensation of 3-phenylsulfonyl-1,3-isobenzofuranone (3) with benzocyclohept-6,7-en-5-ones such as 4 and 15 provides a straightforward, general method for synthesis of functionalized benzo[4,5]cyclohepta[1,2-*b***]naphthalenes (e.g., 5 and 16). This finding was used to achieve a brief and efficient preparation of 6,7-benzo-3,4-(1,4-dimethoxy-2,3-naphtho)-1,5-dioxosuberane (2), an established intermediate to the naturally occurring red pigment radermachol (1).**

The isolation and structure elucidation of the red pigment radermachol (1) was originally reported by Joshi et al.¹ Subsequently, the same group accomplished a total synthesis of **1**, in which the benzocycloheptadiene[1,2-*b*]-naphthalene dione **2** was employed as a key intermediate.2

Our work with the isobenzofuranone annulation suggested that **5**, a potential precursor to **2**, might be readily prepared through condensation of the phenylsulfonyl isobenzofuranone **3** with the benzocyclohepten-5-one (**4**) (Scheme 1).3

Since the use of benzcyclohepten-5-ones in the isobenzofuranone annulation had not been previously explored and because this approach would provide a new route to benzo- [4,5]cyclohepta^{[1,2-*b*]naphthalenes, we decided to investigate} this approach.

To test the feasability of using the annulation methodology to generate the objective ring system, the anion of the phenylsulfonyl isobenzofuranone **3** was condensed with 8,9-

[‡] Dedicated to the memory of the late Arthur G. Schultz (1942-2000). (1) Joshi, B. S.; Gawad, D. H.; Pelletier, S. W. Kartha, G.; Bhandary, K. *Tetrahedron Lett.* **1984**, *25*, 5547.

⁽²⁾ Joshi, B. S.; Jiang, Q.; Rho, T.; Pelletier, S. W. *J. Org. Chem.* **1994***, 59*, 8220. Jiang, Q.; Joshi, B. S.; Pelletier, S. W. *Tetrahedron Lett.* **1991**, *32*, 5283.

⁽³⁾ Hauser, F. M.; Rhee, R. P. *J. Org. Chem*. **1978**, *43*, 178. For use of this reaction in natural products syntheses, see: Hauser, F. M.; Mal, D. *J. Am. Chem. Soc.* **1984**, *106*, 1098. Hauser, F. M.; Prasanna, S. *Tetrahedron* **1984**, *40*, 4711. Hauser, F. M.; Chakrapani, S.; Ellenberger, W. P. *J. Org. Chem.* **1991**, *56*, 5248. Hauser, F. M.; Tommasi, R. A. *J. Org. Chem*, **1991**, *56*, 5758.

dihydrobenzocyclohepten-5-one4 (**4**). Indeed, gram quantities of the expected benzo[4,5]cyclohepta[1,2-*b*]naphthalene **5a** were produced in 85% yield. A distinctive feature of the ¹ H NMR spectrum of **5a** was the presence of multiplets at 3.13 and 3.27 ppm for the protons on the methylene groups at C-12 and C-13.

Once it was established that the isobenzofuranone condensation provided the ring system, various methods for introduction of a C-13 ketone functionality in **5a** were explored to complete construction of the intermediate **2**. The conceptualized plan, as outlined in Scheme 2, was to convert

 a^2 a. (CH₃O)₂SO₂, K₂CO₃, acetone, reflux, 15h, 46%; b. Bu₄N⁺F⁻, CH₃I, DMF, 75%; c. MCPBA, CH₂Cl₂, rt, 4 h, 78%.

5a to the dimethyl ether derivative **5b** and then introduce C-12/C-13 unsaturation in **6**, possibly through benzylic bromination/dehydrobromination. It was anticipated that the epoxide **7**, derived from **6**, would undergo regioselective rearrangement to the objective ketone **2**, ⁵ as a result of resonance stabilization by the neighboring methoxyl group. We were pleased but not entirely surprised to discover that the unsaturated compound **6** was directly formed in 46% yield on attempted methylation of $5a$ with $(CH₃O₂SO₂$ and $K₂CO₃$, thereby obviating the need for alternative methods for introduction of C-12/C-13 unsaturation. Formation of **6** was confirmed by the ¹H NMR spectrum. There were no absorptions between 3.1 and 3.3 ppm for the protons on the ethano bridge. Instead, a one-hydrogen doublet at 6.95 ppm $(J = 12.4$ Hz) was observed, indicating the presence of a

vinyl hydrogen. Proton decoupling established that the other vinyl hydrogen was buried in the aromatic absorptions. Apparently the presence of oxygen in the medium resulted in oxidation of the hydroquinone **5a** to the quinone **8**, which underwent tautomerization to **9** and then methylation. Although we had seen this phenomena before and even refined and capitalized on it for anthracycline syntheses,⁶ the facility of this transformation was nevertheless striking. In fact, preparation of the dimethyl ether **5b**, uncontaminated with the unsaturated dimethyl ether **6**, proved challenging.⁷

Although epoxidation of 6 (MCPBA, CH₂Cl₂) produced **7** in 78% yield, attempted rearrangement of 7 with CF_3CO_2H or BBr3 failed to give the expected ketone **2**. A possible explanation is that, as shown in Figure 1, the ring system is

Figure 1. Three-dimensional representation of **7** showing the cupped geometry.

cup-shaped and opening of the epoxide to form a carbocation would result in additional ring strain. Moreover, attempted reductive opening $(H_2, Pd/BaSO_4)$ of the epoxide in 7 was also unsuccessful. In this case, the catalyst probably cannot access the concave face.

Based on the expectation that regiospecific reductive opening of a 12,13-epoxide or regioselective reductive removal of a 12-hydroxyl group would be possible, the route shown in Scheme 3 was explored. To access appropriately functionalized intermediates, our previously developed procedure for oxidative tautomerization of quinones was exploited.6 Treatment of the hydroquinone **5a** with Fetizon's

 a a. Ag₂CO₃, Et₃N, CH₂Cl₂, rt, 30 min, 99%; b. Zn, Ac₂O, AcOH, rt

⁽⁴⁾ Ito, S.; Kasai, M.; Ziffer, H.; Silverton, J. V. *Can. J. Chem.* **1987**, *65*, 574.

⁽⁵⁾ Hauser, F. M.; Prasanna, S. *Synthesis* **1980**, 621.

^aa. Ethylene glycol, PPTS, PhH, reflux, 15 h, 97%; b. LDA, TMSCI, CH_2Cl_2 , -78 °C to rt, 1h; c. Pd(OAc)₂, CH₃CN, reflux, 15h, 95%; d. LiOt-Bu, 3, THF, -78 ^oC to rt, 3h; e. Bu₄NF, CH₃I, DMF, rt, 15h, 75%; f. PPTS, acetone/water, reflux, 20 h, 97%; g. AlCl₃, dimethylacryloyl chloride, CH₂Cl₂, reflux, 1 h; h. TMSI, CDCl₃, rt, 30 h; i. MeOH; j. PTSA, PhH, reflux Dean-Stark, 6 h.

reagent⁸ in the presence of Et_3N directly furnished the unsaturated quinone 10 in quantitative yield.⁹ As expected, under reductive acetylation conditions, **10** was converted to the monacetylated intermediate **11**. Unexpectedly, **11** proved resistant not only to epoxidation with MCPBA but also to dihydroxylation (catalytic OsO4 with either TMNO or *t*-BuOOH).

The route shown in Scheme 4, which leads directly to the masked ketone **16**, was investigated next. Ketalization of the known 5,8-diketone **13**¹⁰ with ethylene glycol and PPTS furnished exclusively the monoketal **14**. ¹¹ Treatment of **14** with LDA and TMSCl produced the expected TMS ether, which smoothly underwent oxidation with $Pd(OAc)_2$ to the unsaturated enone **15**.

Condensation of **15** with the anion of the sulfone **3** gave **16a**, which was directly methylated $(Bu_4N^+F^-$, CH₃I, DMF)⁷ to furnish the dimethyl ether **16b** (75% overall yield). Hydrolysis of **16b** (PPTS, acetone/water, 97%) produced **2**, which had physical and spectral properties $(^1H$ and ^{13}C NMR) identical to those reported by Joshi et al.² The sequence reported by them, involving acylation of **2** with dimethylacryloyl chloride to **17**, ¹² followed by demethylation and cyclization furnished **1**.

In summary, we have shown that condensation of benzocycloheptenones with an isobenzofuranone provides straightforward access to functionalized benzocycloheptadiene[1,2 *b*]naphthalenes.

Acknowledgment. This work was generously supported by the National Cancer Institute of the National Institutes of Health under grant CA 18141.

OL0055869

(9) In conjunction with the work described in this paper, condensation of the anion of the isobenzofuranone **3** with the benzocycloheptenone *i* was performed. This reaction produced, after incipient oxidation, the quinone **10** (15%), the bridged bicyclic product *ii* (7%), and *iii* (28%).

(10) Barltrop, J. A.; Johnson, A. J.; Meakins, G. D. *J. Chem. Soc.* **1951**, 181.

(11) Even under forcing conditions, excess ethylene glycol and prolonged reflux, only trace quantities of the bisketal were observed. This selectivity is probably a consequence of relief of ring strain.

 (12) Our yield for the AlCl₃ promoted acylation of 2 to 17 was only 13%, in contrast to the reported 69%.

⁽⁶⁾ Hauser, F. M.; Takeuchi, C.; Yin, H.; Corlett, S. A. *J. Org. Chem.* **1994***, 59*, 258 and references therein.

⁽⁷⁾ Ultimately, the dimethyl ether **5b** was cleanly prepared in 75% yield from **5a** by rigorously removing oxygen from the reaction medium and using an alternative methylation procedure ($Bu_4N^+F^-$, CH_3I , DMF). Slater, G. P.; Haskins, R. H.; Hogge, L. R.; Nesbitt, L. R. *Can. J. Chem.* **1967**, *45*, 92.

⁽⁸⁾ Fetizon, M.; Golfiner, M. *Compt. Rend.* **1968**, 267, 900.